The United Nations Development Programme has identified access to information as an essential element to support poverty eradication. People living in poverty are often unable to access information that is vital to their lives, such as information on their entitlements, public services, health, education or work opportunities. Timely access to information is essential to perform many economic, social and leisure activities. In today’s digital age, information is more and more often provided in digital form.
Research projects in Information Technology
Displaying 81 - 90 of 191 projects.
Operations of Intelligent Software Systems
Nowadays more and more intelligence software solutions emerge in our daily life, for example the face recognition, smart voice assitants, and autonomous vehicle. As a type of data-driven solutions, intelligent components learn their decision logic from data corpus in an end-to-end manner and act as a black box. Without rigorous validation and verification, intelligent solutions are error-prone especially when deployed in the real world environment. To monitor, identify, mitigate and fix these defects becomes extremely important to ensure their service quality and user experience.
STEM Making for all: including people with a disability
People with disabilities are excluded from the assistive technology creation process because the methods and tools that are used are inaccessible. This leads to missed opportunities to create more accessible technologies for everyone including assistive technologies. This project will engage people with disabilities in the technology creation process at many levels, from engagement activities, input into designs and creation of technology and the facilitation of independent making of assistive technologies.
Science as a public good: improving how we do research with game theory and computation
Science is a public good. The benefits of knowledge are or should be available to everyone, but the way this knowledge is produce often responds to individual incentives [1]. Scientist are not only cooperating with each other, but in many cases competing for individual gains. This structure may not always work for the benefit of science.
Interoperability (using FHIR) in cutting-edge medical software systems
Critical work to the future of healthcare ... exploring the role of #FHIR in interoperability and #datascience
Also allowing exploration and usage of the #SMART on #FHIR software paradigm
Involves working with various real world health services and health IT partners
#digitalhealth #health #EMR #hospital #software
Explainable and Robust Deep Causal Models for AI assisted Clinical Pathology
We are living in the era of the 4th industrial revolution through the use of cyber physical systems. Data Science has revolutionised the way we do things, including our practice in healthcare. Application of artificial intelligence/machine learning to the big data from genetics and omics is well recognized in healthcare, however, its application to the data reported everyday as part of the clinical laboratory testing environment for improvement of patient care is under-utilized.
Privacy-Preserving Machine Learning
With success stories ranging from speech recognition to self-driving cars, machine learning (ML) has been one of the most impactful areas of computer science. ML’s versatility stems from the wealth of techniques it offers, making ML seem an excellent tool for any task that involves building a model from data. Nevertheless, ML makes an implicit overarching assumption that severely limits its applicability to a broad class of critical domains: the data owner is willing to disclose the data to the model builder/holder.
Reconstructing the Past through Immersive Media
Recent advances in technology mean we can now reappraise the exploration of the past as a future-aligned endeavour. The definition of the ‘past’ here is broad; the reconstruction of a bygone world may derive from relatively recent written texts or photographic archives, from centuries old remains uncovered in archaeological excavations, or even far back in ‘deep time’, to the long-vanished ecologies evidenced in the fossil record.
Learning from massive amounts of EEG data
The existing deep learning based time series classification (TSC) algorithms have some success in multivariate time series, their accuracy is not high when we apply them on brain EEG time series (65-70%). This is because there is a large variation between EEG data of different subjects, so a TSC model cannot generalise on unseen subjects well. In this research project we investigate self-supervised contrastive learning to encode the EEG data. This way we can better model the distribution of our EEG data before classifying it to different mental status. See a recent work here [1].
A Smart Software Vulnerability Detection Platform
Identifying vulnerabilities in real-world applications is challenging. Currently, static analysis tools are concerned with false positives; runtime detection tools are free of false positives but inefficient to achieve a full spectrum examination. A generic, scalable and effective vulnerability detection platform, taking advantage of both static and dynamic techniques, is desirable. To further overcome the shortcomings of these techniques, deep learning is more and more involved in static vulnerability localization and improving fuzzing efficiency.