This project involves the automated generation of textual descriptions for audio content, such as spoken language, sound events, or music. This process typically employs deep learning techniques, such as recurrent neural networks, transformer models, and so on, to analyse audio signals and generate coherent captions. By training on large datasets that include both audio recordings and corresponding textual descriptions, these models learn to recognize patterns and contextual meanings within the audio.
Honours and Masters project
Displaying 41 - 50 of 219 honours projects.
Adaptively smoothing one-dimensional signals remains an important problem, with applications in time series analysis, additive modelling and forecasting. The trend filter provides an novel class of adaptive smoothers; however, it is usually implemented in a frequentist framework using tools like the lasso and cross-validation. Bayesian implementations tend to rely on posterior sampling and as such do not provide simple, sparse point-estimates of the underlying curve.
Learning appropriate prior distributions from replications of experiments is a important problem in the space of hierarchical and empirical Bayes. In this problem, we exploit the fact that we have multiple repeats of similar experiments and pool these to learn an appropriate prior distribution for the unknown parameters of this set of problems. Standard solutions to this type of problem tend to be of mixed Bayesian and non-Bayesian form, and are somewhat ad-hoc in nature.
The spectral density of a time series (a series of time ordered data points -- for example, daily rainfall in the Amazon or the monthly stocks of fish in the Pacific) gives substantial information about the periodic patterns hidden in the data. Learning a good model of the spectral density is usually done through parametric methods like autoregressive moving average processes [1] because non-parametric methods struggle to deal with the interesting “non-smooth” nature of spectral densities. This project aims to apply a powerful and new non-parametric smoothing technique to this problem.
Feedback is crucial to learning success; yet, higher education continues to struggle with effective feedback processes. It is important to recognise that feedback as a process requires both teachers and students to take active roles and work as partners. However, one challenge to facilitate a two-way process of feedback is the difficulty to track feedback impact on learning, particularly how students interact with feedback.
Verifiable Dynamic Searchable Symmetric Encryption (VDSSE) enables users to securely outsource databases (document sets) to cloud servers and perform searches and updates. The verifiability property prevents users from accepting incorrect search results returned by a malicious server. However, the community currently only focuses on preventing malicious behavior from the server but ignores incorrect updates from the client, which are very likely to happen in multi-user settings. Indeed most existing VDSSE schemes are not sufficient to tolerate incorrect updates from users. For instance,…
The increasing integration of Large Language Models (LLMs) into various sectors has recently brought to light the pressing need to align these models with human preferences and implement safeguards against the generation of inappropriate content. This challenge stems from both ethical considerations and practical demands for responsible AI usage. Ethically, there is a growing recognition that the outputs of LLMs must align with laws, societal values, and norms.
The last several years have witnessed the promising growth of AI-empowered techniques in mobile devices, from the camera to smart assistants. Users can find traces of AI in almost every aspect of mobile devices.
With the glow of digital information techniques, mobile systems are powerful ever and occupying more market shares. Just like wildly used social media sites, e.g. Facebook and Twitter, smartphone usage is up to 80% by 2020. In parallel to this trend, many companies are trying to incorporate Artificial Intelligent especially deep learning empowered applications into devices to further ease the life of people.
Graph neural networks (GNNs) are widely used in many applications. Their training graph data and the model itself are considered sensitive and face growing privacy threats.