Skip to main content

Honours and Minor Thesis projects

Displaying 161 - 170 of 213 honours projects.


Primary supervisor: Hamid Rezatofighi

Pose Tracking is the task of estimating multi-person human poses in videos and assigning unique instance IDs for each keypoint across frames. Accurate estimation of human keypoint-trajectories is useful for human action recognition, human interaction understanding, motion capture and animation.

Primary supervisor: Jianfei Cai

Deep learning has achieved ground-breaking performance in many vision tasks in the recent years. The objective of this project is to apply the state-of-the-art deep learning based image classification/detection networks such as ResNet or Faster RCNN for classifying CT or X-Ray images.

Primary supervisor: Bioinformatics

Neuroscience is becoming an exciting and multidisciplinary field, with a combination of biology, psychology, engineering, and large-data processing. This project is suitable for those who are motivated to apply data-processing skills to biological questions. Our research projects investigate how neural circuits in the mouse brain work during a behavioural task; we visualise neural activity in vivo using advance fluorescent microscopy (two-photon imaging), while filming the behaviour of mice.

Primary supervisor: Kim Marriott

The last two decades have witnessed a sharp rise in the amount of data available to business, government and science. Data visualisations play a crucial role in exploring and understanding this data. They provide an initial grasp of the data and allow the assessment of findings of data analytics techniques. This reliance on visualisations creates a severe accessibility issue
for blind people (by whom we mean people who cannot use graphics even when magnified).

Primary supervisor: Penny Zhang

Despite an increase in the usage of AI models in various domains, the reasoning behind the decisions of complex models may remain unclear to the end-user. Understanding why a model entails specific conclusions is crucial in many domains. A natural example of this need for explainability can be drawn from the use of a medical diagnostic system, where it combines patient history, symptoms and test results in a sophisticated way, estimate the probability that a patient has cancer, and give probabilistic prognoses for different treatment options.

Primary supervisor: David Dowe

Expected outcomes: The student will learn inference and representation learning methods for network data. The knowledge can be easily used to analyse other networks, including but not limited to social networks, citation networks, and communication networks. A research publication in a refereed AI conference or journal is expected. A student taking this project should ideally have at least a reasonable background mathematical knowledge, including differential calculus (e.g., partial derivatives) and matrix determinants.

Primary supervisor: David Dowe

 Automation has affected employment at least as far back as Gutenberg, the introduction of the printing press and the effect on scribes and others. Such changes have occurred in the centuries since. In more recent times, we see electronic intelligence showing increasingly rapid advances, with examples including (e.g.) easily accessible, free, rapid and often somewhat reliable language translation. More recent advances include the increasing emergence of driverless cars.

Primary supervisor: David Dowe

Theory and applications in data analytics of time series became popular in the past few years due to the availability of data in various sources. This project aims to investigate and generalise Hybrid and Neural Network methods in time series to develop forecast algorithms. The methodology will be developed as a theoretical construct together with wide variety of applications.

Primary supervisor: David Dowe

    DNA or RNA motif discovery is a popular biological method to identify over-represented DNA or RNA sequences in next generation sequencing experiments. These motifs represent the binding site of transcription factors or RNA-binding proteins. DNA or RNA binding sites are often variable. However, all motif discovery tools report redundant motifs that poorly represent the biological variability of the same motif, hence renders the identification of the binding protein difficult.

Primary supervisor: Yuan-Fang Li

Develop NLP tools to track politicians’ campaign promises on traditional and social media: With applications to Australian, Indian and/or US politics.