Skip to main content

Research projects in Information Technology

Displaying 41 - 50 of 110 projects.


Creating a turnkey solution to classify, predict and simulate behaviour from videos of rodents

Introduction

Rodent behavioural testing is the study of the neural mechanisms underlying emotions [1].  It is used in the study of almost all mental conditions, including PTSD [2], OCD [3] and autism [4].  For example, to measure anxiety, researchers may place a rodent in a large tub, record a top-down video and measure the time spent near the safety of walls [2]. These videos also contain rich information about behavioural patterns, but scoring this manually is time consuming.

Combating antimicrobial resistance through use of artificial intelligence and genomics

Antimicrobial resistance (AMR) is one of the most significant and immediate threats to health in Australia and globally. We are working on harnessing new technologies such as artificial intelligence and next-generation sequencing and to improve the diagnosis, treatment and prevention of AMR infections.

 

The specific aims of this project are:

1. Rapidly identify AMR and predict treatment responses through use of genomics and machine learning in a clinical context.

Active Learning for Language and Multimodal Applications

This PhD project aims to mitigate the data scarcity of new NLP and Multimodal applications by developing novel active learning algorithms. In this project, the student will leverage large foundation models, such as ChatGPT and GPT4, incorporating the cutting-edge techniques in the other areas, such as reinforcement learning, causality and GFlowNets, to devise novel active learning algorithms for NLP and multimodal applications.

Event Extraction and Neuro-Symbolic Reasoning for Law Enforcement and Legal Applications

In recent years, social media have become a common plattforms for criminals to stalk, intimidate, manipulate and abuse vulnerable citizens, such as women and youth. A recent survey of students in grades 6 to 9 found that the rates of electronic bullying for girls were between 16% and 19%, whereas the rates for boys were between 11% and 19%. 33.47% of sexually abused girls reported experiencing cyberbullying compared to 17.75% of nonsexually abused girls.

Supervisor: Dr Lizhen Qu

Disentangled Representation Learning for Synthetic Data Generation and Privacy Protection

Synthetic data generation has drawn growing attention due to the lack of training data in many application domains. It is useful for privacy-concerned applications, e.g. digital health applications based on electronic medical records. It is also attractive for novel applications, e.g. multimodal applications in meta-verse, which have little data for training and evaluation. This project focuses on synthetic data generation for audio and the corresponding multimodal applications, such as mental health chatbots and digital assistants for negotiations.

Supervisor: Dr Lizhen Qu

Development of AI based Point of Care MRI

Portable point of care medical devices have revolutionised the way in which people receive medical treatment. It can bring timely and adequate care to people in need but also opens up the opportunity to address the healthcare inequality for the rural and remote.

Machine Learning for faster and safer MRI and PET imaging

Machine learning has recently made significant progress for medical imaging applications including image segmentation, enhancement, and reconstruction.

Funded as an Australian Research Council Discovery Project, this research aims to develop highly novel physics-informed deep learning methods for Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) and applications in image reconstruction and data analysis.

Privacy-Aware Rewriting

Despite the popularity of providing text analysis as a service by high-tech companies, it is still challenging to develop and deploy NLP applications involving sensitive and demographic information, especially when the information is expected to be shared with transparency and legislative compliance. Differential privacy (DP) is widely applied to protect privacy of individuals by achieving an attractive trade-off between utility of information and confidentiality.

Supervisor: Dr Lizhen Qu

Multimodal Output Generation to Assist Blind People for Data Exploration and Analysis

In the big-data era, the proliferation of data and the widespread adoption of data analytics have made data literacy a requisite skill for all professions, not just specialist data scientists. At the core of data literacy is the ability to detect patterns and trends, or identify outliers and anomalies from data. However, these requirements often rely on visualisations, which creates a severe accessibility issue for blind people.

Supervisor: Dr Lizhen Qu