In recent years, social media have become a common plattforms for criminals to stalk, intimidate, manipulate and abuse vulnerable citizens, such as women and youth. A recent survey of students in grades 6 to 9 found that the rates of electronic bullying for girls were between 16% and 19%, whereas the rates for boys were between 11% and 19%. 33.47% of sexually abused girls reported experiencing cyberbullying compared to 17.75% of nonsexually abused girls.
Research projects in Information Technology
Displaying 51 - 60 of 114 projects.
Medical AI Exploration with Machine Learning and Robotics
PhD Studentship Description:
Disentangled Representation Learning for Synthetic Data Generation and Privacy Protection
Synthetic data generation has drawn growing attention due to the lack of training data in many application domains. It is useful for privacy-concerned applications, e.g. digital health applications based on electronic medical records. It is also attractive for novel applications, e.g. multimodal applications in meta-verse, which have little data for training and evaluation. This project focuses on synthetic data generation for audio and the corresponding multimodal applications, such as mental health chatbots and digital assistants for negotiations.
Development of AI based Point of Care MRI
Portable point of care medical devices have revolutionised the way in which people receive medical treatment. It can bring timely and adequate care to people in need but also opens up the opportunity to address the healthcare inequality for the rural and remote.
Machine Learning for faster and safer MRI and PET imaging
Machine learning has recently made significant progress for medical imaging applications including image segmentation, enhancement, and reconstruction.
Funded as an Australian Research Council Discovery Project, this research aims to develop highly novel physics-informed deep learning methods for Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) and applications in image reconstruction and data analysis.
Privacy-Aware Rewriting
Despite the popularity of providing text analysis as a service by high-tech companies, it is still challenging to develop and deploy NLP applications involving sensitive and demographic information, especially when the information is expected to be shared with transparency and legislative compliance. Differential privacy (DP) is widely applied to protect privacy of individuals by achieving an attractive trade-off between utility of information and confidentiality.
Multimodal Output Generation to Assist Blind People for Data Exploration and Analysis
In the big-data era, the proliferation of data and the widespread adoption of data analytics have made data literacy a requisite skill for all professions, not just specialist data scientists. At the core of data literacy is the ability to detect patterns and trends, or identify outliers and anomalies from data. However, these requirements often rely on visualisations, which creates a severe accessibility issue for blind people.
Science as a public good: improving how we do research with game theory and computation
Science is a public good. The benefits of knowledge are or should be available to everyone, but the way this knowledge is produce often responds to individual incentives [1]. Scientist are not only cooperating with each other, but in many cases competing for individual gains. This structure may not always work for the benefit of science.
Explainable and Robust Deep Causal Models for AI assisted Clinical Pathology
We are living in the era of the 4th industrial revolution through the use of cyber physical systems. Data Science has revolutionised the way we do things, including our practice in healthcare. Application of artificial intelligence/machine learning to the big data from genetics and omics is well recognized in healthcare, however, its application to the data reported everyday as part of the clinical laboratory testing environment for improvement of patient care is under-utilized.
Learning from massive amounts of EEG data
The existing deep learning based time series classification (TSC) algorithms have some success in multivariate time series, their accuracy is not high when we apply them on brain EEG time series (65-70%). This is because there is a large variation between EEG data of different subjects, so a TSC model cannot generalise on unseen subjects well. In this research project we investigate self-supervised contrastive learning to encode the EEG data. This way we can better model the distribution of our EEG data before classifying it to different mental status. See a recent work here [1].