Skip to main content

Research projects in Information Technology

Displaying 191 - 193 of 193 projects.


Ecosystem Monitoring using Deep Learning

The project develops methods to use acoustic data for the identification of animals in the wild and in controlled settings. It is part of a broader effort to build AI-enabled methods to support biodiversity and sustainability research. The initial objective is to use deep learning techniques to perform acoustic species identification in real-time on low-cost sensing devices coupled to cloud-based backends. Ultimately, we are aiming to move to Edge-AI, ie.

Supervisor: Prof Bernd Meyer

Neural Machine Translation for Low-Resource Languages

The proposed project aims to develop new methodologies for developing NMT systems between extremely low-resource languages and English. Recent advances in neural machine translation (NMT) are a significant step forward in machine translation capabilities. However, "NMT systems have a steeper learning curve with respect to the amount of training data, resulting in worse quality in low-resource settings".

Deep learning from less human supervision

 Although deep learning has produces state of the art results on many problems, it is a data hungry technology requiring a lot of human supervision in the form of annotated data. Potential PhD topic include learning to learn and meta-learning, active learning, semi-supervised learning, multi-task learning, transfer learning, and learning representations for NLP. Techniques include deep generative models (eg auto-encoders and generative adversarial networks) and reinforcement/imitation learning algorithms for Markov Decision Processes.