Current studies on diabetes recommender systems and apps mainly focus on the performance and personalisation of AI models and techniques, including machine learning and deep learning models that are trained on user data. These works often use a one-size-fits-all approach for presenting information to users. Yet, research shows that humans process information in different ways, and their attitudes towards an action depend on their attitude-function styles.
Honours and Masters project
Displaying 171 - 180 of 243 honours projects.
A Theory-Driven Recommendation App using Generative AI tools for Diabetes Management
Current studies on diabetes recommender systems and apps mainly focus on the performance and personalisation of AI models and techniques, including machine learning and deep learning models that are trained on user data. These works often use a one-size-fits-all approach for presenting information to users. Yet, research shows that humans process information in different ways, and their attitudes towards an action depend on their attitude-function styles.
Social media epidemic intelligence and surveillance for chronic conditions and their associated risk factors
Collecting and analysing social media content (e.g., Reddit), along with using Google Trends, presents a great opportunity to develop social media epidemic intelligence. This approach can enhance the understanding of chronic conditions such as arthritis, back pain, and knee pain, as well as track associated areas such as treatments and risk factors, including obesity, diet, physical activity, and exercise.
Mind Reading: Translating Brain Activity into Textual Language
Our groundbreaking research explores the intricate relationship between natural language processing (NLP) and electroencephalography (EEG) brain signals [1]. By leveraging advanced machine learning techniques, we aim to decode the neural patterns associated with language comprehension and production, ultimately enabling seamless communication between humans and machines. Our innovative approach has the potential to revolutionize brain-computer interfaces,speech recognition technologies, and assistive devices for individuals with communication impairments.
AI-Enhanced Mental Health Support for Vulnerable Populations [Minor Thesis]
Mental health challenges disproportionately affect vulnerable populations, often due to limited access to traditional healthcare services. The rise of Generative AI offers a groundbreaking opportunity to bridge this gap by providing personalized, scalable, and accessible mental health support. This project, led out of Action Lab, aims to harness the potential of Generative AI to develop innovative technologies tailored for mental health interventions.
Citation Analysis and Social Network Analysis
Project description
Game Design
Project Description: The project is focused on developing game-based learning environments where the users’ trace or interaction data could be collected. The game-based environment needs to be designed to allow the users to navigate and explore at their own pace. Using the environment, the participants can practice their technical/professional skills from various options.
AI (Deep Reinforcement Learning) for Strategic Bidding in Energy Markets
The world’s energy markets are transforming, and more renewable energy is integrated into the electric energy market. The intermittent renewable supply leads to unexpected demand-supply mismatches and results in highly fluctuating energy prices. Energy arbitrage aims to strategically operate energy devices to leverage the temporal price spread to smooth out the price differences in the market, which also generates some revenue.
Deepfakes Detection in Images/Video/Audio
Deepfakes detection deals with machine learning methods, which detect if an image/video/audio sample is manipulated with a generative AI software. In recent years, deepfakes have been increasingly used for malicious purposes, including financial fraud, misinformation campaigns, identity theft, and cyber harassment. The ability to generate highly realistic synthetic content poses a serious threat to digital security, privacy, and trust in media. This project will develop methods for detecting deepfakes.
Predicting User Engagement
Is the user paying attention? Is the content engaging enough?
The degree of concentration, enthusiasm, optimism, and passion displayed by individual(s) while interacting with a machine is referred to as ‘user engagement’. Engagement is a positive psychological state characterized by active behavioral participation, positive emotional experiences, and intense cognitive focus. Being able to detect engagement and/or attention has wide applications in consumer commerce, smart cars, augmented reality etc.